

NATIONAL VOCATIONAL TRAINING INSTITUTE

TESTING DIVISION

TRADE TESTING REGULATIONS AND SYLLABUS

TRADE: CONSTRUCTION ELECTRICAL

LEVEL: CERTIFICATE TWO

CERTIFICATE TWO

A. INTRODUCTION

i. The review of this syllabus has been generally influenced by the demands of industries due to its continuous change as a result of technological advancement and the changing needs of society.

It was also influenced by the TVET reforms under the directions of the new educational reforms with the view to opening up further education and training opportunities to TVET graduates.

The certificate TWO syllabus is designed to respond to the following level descriptors:

QUALIFICATION	KNOWLEDGE LEVEL	SKILLS AND ATTITUDE:
Certificate II	 To demonstrate broad knowledge base with substantial depth in area(s) of study. 	1. Needs varied skills and competencies in different tasks under various contexts.
	2. To demonstrate a command of analytical interpretation of range of data.	 Require a wide range of technical and supervisory skills.
	3. To present results of study accurately and reliably.	 Would be employed in different contexts.

II. The course would enhance the Knowledge of trainees in the safe use of electrical tools, equipment and materials. Wiring systems, occupational drawing, Installation of earthing systems, sequence of supply control, installation of Protective devices, Inspection and testing, Lighting and Power circuits, trade drawing (circuit drawing), troubleshooting and repairs of electrical wiring and related equipment in building and other structures, Preparation of planning and estimating of materials, trade science and calculations and Relevant IEE – Regulations.

B. OBJECTIVES

On completion of this course, the trainee should be able to:

- i) Understand the importance of electrical safety precaution at workshop.
- ii) Identify and use of correct tools and equipment.
- iii) Perform surface wiring, conduit wiring system and Trunking System.
- iv) Read and interpret occupational drawing (Blue Print)
- v) Install earthing system.
- vi) Select and arrange supply control in correct sequence.
- vii) Select and Install different types of protective devices.
- viii) Carry out visual Inspection and testing.
- ix) Wire lighting and Power circuit.
- x) Interpret and draw circuit diagrams.
- xi) Know how to diagnose fault in electrical installation and equipment.
- xii) Know the need for estimating electrical project.
- xiii) Understand the importance of trade science and calculation.

C. THE COURSE COMPRISES:

- a) Trade Theory
- b) Trade Science and Calculation
- c) Trade Drawing
- d) General Paper
- e) Trade Practical

EXAMINATION: The candidates would be examined in the FIVE components listed above.

Practical work must be carefully planned to illustrate application of the theory and to provide maximum opportunity for shop practice, laboratory work and demonstration.

D. KNOWLEDGE AND SKILL REQUIREMENT

The prime objectives of the program is to provide knowledge and skills of the trade in a manner that will best meet the needs of the trade as well industries using electrical equipments

E. ENTRY TO THE COURSE

Minimum education: Must have passed JHS or SHS examination. Age – 16 years and above. However, the selection of the students for the course is within the discretion of the head of the institution.

F. ELIGIBILITY FOR ENTRY TO EXAMINATION

Candidates may enter for examination only as internal candidate that is those who at the time of entry to the examination are undertaking (or have already completed the course at an approved establishment).

G. EXTERNAL EXAMINERS

The practical work of candidates will be assessed by an external examiner appointed by the Testing Commissioner.

H. EXAMINATION RESULTS AND CERTIFICATES

Each candidate will receive record of performance given the grade of performance for the components taken. These are:

- a) Distinction
- b) Credit
- c) Pass
- d) Referred/Fail

Certificates would be issued to candidates who pass in all the components.

<u>NOTE</u>

All Technical and Vocational trainees who aspire to take advantage of the opportunities opened to them in the educational reforms should NOTE that for a trainee to progress to Certificate Two (2) a pass in Certificate One (1) is compulsory

I. APPROVAL OF COURSE

Institutions or other establishments intending to prepare trainees for the Examination must apply to:

THE COMMISSIONER TESTING DIVISION NVTI HEAD OFFICE P. O. BOX MB 21, ACCRA

J. ACKNOWLEDGEMENT

NVTI wishes to acknowledge the preparatory material done by the team of experts, which have been incorporated into this syllabus: .Mr. Theophilus Kweku Arkhurst (H. N. D)

Mr. David Annan Tetteh (E.E.T. Part III)

Mr. William Matey (E.E.T. Part III, C.Ed)

K. RECOMMENDED TOOLS AND EQUIPMENT

- 1. Digital/Analogue A.V.O. Meter
- 2. Voltmeter
- 3. Ammeter
- 4. Wattmeter
- 5. Megger Tester
- 6. Osciloscope
- 7. 3-phase Induction Motor
- 8. Single phase motor
- 9. Clamp-on-ammeter
- 10. Buchanan crimping tool
- 11. Set of screw drivers (star/flat)
- 12. Combination pliers
- 13. Side cutters
- 14. Long nose pliers
- 15. Spirit level
- 16. Drilling machine
- 17. Claw hammer
- 18. Hacksaw
- 19. Wirestripper
- 20. Adjustable wrench
- 21. 1/2" E.M.T. Bender
- 22. 1/16" x ¹/₄
- 23. Electrician folding knife
- 24. Jimlet
- 25. Allen wrench set
- 26. Speed bore drill set
- 27. Steel tape measure
- 28. Tool box
- 29. Chisel
- 30. Punch
- 31. Conduit bending machine
- 32. Cordless drilling machine
- 33. Bench vice

L. <u>Recommended Text Books</u>

- 1. AC/DC Principles (By Paul T. Shultz) Publishers
- 2. Electrical Wiring Residential (By: Ray C. Mullen) Publishers
- 3. Electrical Motors and Control System (By: Petruzella Publishers)

)

- 4. Electrical Installation and Practice
- 5. Electrical Principles and Technology (By:
- 6. The Moltivate (By
- 7. Electricity (By: Herman Publishers)
- 8. Electrical Wiring Industrial (By: Smith Publishers)
- 9. Electrical Installation Work and Practice (By:...
- 10. IEE Regulations 16th Edition

CERTIFICATE TWO – TRADE THEORY

ITEM	TASK	CRITICAL POINTS	SUB POINTS	INSTRUCTIONAL TECHNIQUES
1.0.	POWER SUPPLY	Trainees should be able to draw	Draw and labeled simple block diagram	Draw the power supply
		a complete block diagram for power supply unit.	of a power supply unit	unit on board and explain to the trainees
		2. Describe the construction and principles of operation of a simple power supply unit.	Explanation on the make-ups and its operations	Explain the construction and operation to trainees
		3. <u>Application</u> : of power supply unit		Discuss with the trainees the applications or area of use.
		Describe the P&N type of semi- conductor	Applications	Explain the type to the trainees with its application
		Describe the construction and operations of the following	Applications of the following:	application
		devices.	a. Zener	
		a. Zener diode	b. Rectifier	
		b. Rectifier diodec. Thyristor	c. Thyristor d. Transistor	
		d. Transistor		
2.0.	BASIC ELECTRONICS	Trainees should be able to: 1. Define and list types of resistors and their ratings	Definition and reading of resistor valve by using the colour codings	Explain the typed and how to read valves by the colour code
		2. Define and list types of capacitors	Definition and list types: a. Air b. Mica c. Paper	Discuss with the trainees the types and its applications
		3. Define and list types of semi- conductor materials	Definition and list types a. Silicon b. Germanium	Explain the types its application to the trainees

ITEM	TASK	CRITICAL POINTS	SUB POINTS	INSTRUCTIONAL TECHNIQUES
		Explain the types of transformers	Explanation on a. Double wound transformer b. Auto transformer	Discuss types of transformers with the trainees
		2. Explain the use of transformers	Applications of the types: a. Double wound b. Auto transformer	Mention few areas of use to the trainees
3.0.	TRANSFORMERS	1. Explain the meaning of a transformer	Define and give a detail explanations	Discuss the meaning of a transformer with trainees
		2. Describe the principles of operation of a transformer	Description and operation of a transformer	Explain to the trainees the construction and operations by using chart
		3. Construction of a transformer	Descriptions of a transformer	or real object
		State types of faults in single phase motor	State the following:a. Open circuitb. Short circuitc. Grounded windingd. Centrifugal switche. Worn or tight bearing	Discuss with the trainees the various types of fault on a single – phase motor
		Identify and rectify fault in a single phase motor	a. Open circuit test (multimeter)b. Short circuit test (multimeter)c. Grounded winding, insulationresistance tester	Explain to the trainees the various type of rectifying fault in a single phase motor.
		Explain how the rotating magnetic field is produce	Detail explanations	Explain to the trainees the rotating magnetic field is produce
		Explain the characteristics of each type of motor a. Universal b. Slit phase c. Repulsion d. Shaded pole	Details explanations	produce

ITEM	TASK	CRITICAL POINTS	SUB POINTS	INSTRUCTIONAL TECHNIQUES
4.0.	SINGLE PHASE MOTORS	Define a single phase motor and list the types	Definition and types: 1. Split phase 2. Permanent slip phase 3. Capacitor start 4. Shaded pole 5. Repulsion 6. Universal series	Discuss with the trainees the definition and the types
		Identify main parts of a single phase motor	Identification: a. Stator b. Rotor c. End shield d. Bearing e. Centrifugal	Show part of a single- phase motor to the trainees
		Explain hour to test a capacitor	Explanation1. Connect instrument to it and read out the value directly2. Charge the capacitor by connecting it to a supply and after disconnection. Short the ends of the capacitor.	Explain and demonstrate the testing of capacitors to trainees using real object.
		List the types of capacitors	List the types: a. Paper b. Mica c. Ceramic d. Electrolytic	Explain types of capacitors to trainees
		Describe types of capacitors and state its application	Description and application: a. Paper b. Mica c. Ceramic d. Electrolytic	Discuss types of capacitors with trainees using real objects

ITEM	TASK	CRITICAL POINTS	SUB POINT	INSTRUCTIONAL TECHNIQUES
4.0.	SINGLE PHASE MOTORS	Solve problems involving capacitors connected in series and parallel	<u>Calculation</u> : Use formulars i.e.= $CT=1/C1 + 1/C2 + C3$ for series and $CT=C1+C2+3$ for parallel	Solve problems with trainees using the formular
5.0.	ELECTROSTATICS	Trainee should be able to: 1. Explain Electric – charge and electric field	 Define electro statics The charge stoned in an electric field is measured in calombs that is the product of current flow and time which it flows <pre>Q = IT (C) where I = current (A) T = Time (Sec) Q = Quantity (C)</pre> 	Explain to the trainees electric charge and solve electric charge problems
		2. Define a capacitor	Define and state the unit	Explain the definition of capacitor to the trainees
		State the factors involving capacitance in an a.c. circuit	 <u>Statement</u>: a. The capacitance reactance decreases with increase in frequency a. Increase in reactance result in decrease in current 	Explain the factors of capacitance in an a.c. circuit to the trainees
		Solve problems involving resistance and capacitance in an a.c. circuit	Calculation a. Series circuit formular $Z=\sqrt{R^2 + Xc^2}$ Symbol = Zc Unit = Ohm (~)	Explain the methods of solving problems

ITEM	TASK	CRITICAL POINTS	SUB POINTS	INSTRUCTIONAL TECHNIQUES
		Explain the meaning of a capacitance	 Define capacitance and explain Capacitance - Reactance Symbol = Xc Unit = Ohm (~) Solve simple calculations on capacitance in an a.c. circuit The phasor diagram of a pure capacitive load 	Explain the meaning of capacitance and capacitive reactance to the trainees
		State the factors affecting inductance in an a.c. circuit	 <u>Statement:</u> 1. Circuit containing inductive load 2. Induced voltage in series connected inductive load 3. Inductive load in d.c. circuit 	Explain to the trainees factors affecting inductance in an a.c. circuit
		Explain the meaning of impedance and solve problems involving resistance and inductance in an a.c. circuit	Explanation: a. Impedance is the total opposition offered to the flow of electric current $\underline{Symbol = 2}$ $\underline{Unit = Ohm}$ Formular: $Z=\sqrt{R2+X_L^2}$	Discuss the meaning of impedance with the trainees
		Solve problems involving: a. Maximum valve b. Average valve	$\frac{\text{Calculation}}{\text{a. Maximum valve}} = \frac{\text{R.M.S.}}{0.707}$	Discuss with the trainees how to solve the problems
		c. Root Mean square	a. <u>Average Valve</u> 0.6637 x maximum valve	
		Define the following: a. Inductance b. Inductive reactance in an a.c. circuit	Define and explain a. Measure the ability of a circuit to produce magnetic field and stored. b. The position of pure inductive circuit in an a.c. supply	Explain the definition of inductance in an a.c. circuit Symbol = XL Unit = Ohm

TRADE THEORY – CERTIFICATE TWO

ITEM	TASK	CRITICAL POINTS	SUB POINTS	INSTRUCTIONAL TECHNIQUES
7.0.	REGULATION AND CODE OF	Demonstrate knowledge of the practical application of the	Demonstrate knowledge of the appropriate regulation	Discuss with trainees the code of practice. Electricity
	PRACTICE	following regulations	appropriate regulation	Supply Regulation 1988 and
		i. Electricity supply Regulation 1988ii. Electricity at Work	Electricity Supply Regulation 22 – 29 and 32	Health and Safety Act 1974 from Relevant I.E>E. Regulation
		Regulation 1988		
		iii. Health and Safety at Work Act 1974		
		iv. Regulations for Electrical Installation 1991 (IEE Reg. 16 th		
		Edition) v. British Standard Code of Practice	State the need for reference of the code of practice`	
8.0	SPECIAL INSTALLATION	Identify risk: Eg. Petrol filling station Gas filling station		Explain to trainees the type of cable to be use for a special installation
		Types of Wiring 1. MICC 2. Armoured cable		E.g. a. Hazardous Area b. Agriculture and horticulture areas
		 Alloured cable Metal conduit wiring 		noruculture areas
		Hazardous Areas: 1. Mines		
		 Quarry Swanmill 		
		Types of Wiring 1. MICC 2. Armoured cable		
		3. Metal conduit wiring		

TRADE THEORY - CERTIFICATE TWO

				INSTRUCTIONAL
ITEM	TASK	CRITICAL POINTS	SUB POINTS	TECHNIQUES
		Agriculture and Horticultural		Discuss with trainees the
		Installation		protection against corrosion
		State and explain ways of		with regards to type of
		minimizing hazards and risk		protective device to be used
		including:		
		i. Assessment of wiring		Explain to the trainees the
		ii Suitable equipment of cable		type of fire alarm system and
		to be use		their principle of operation
		iii. Provision of reduced voltage		and application
		supplies		
		<u>Corrosive Environment</u> Identify areas requiring special		
		consideration due to the		
		presence of corrosive		
		atmosphere		
		Protection Against Corrosion		
		1. Application of protective		
		technique such as paint, tape,		
		gaskets, sheaths: need for		
		preventive maintenance		
		Fire Alarm System (BS 5839)		
		Describe and explain type of	Identify and describe type of cable	
		circuits	and wiring for use in fir alarm	
		1. Simple open circuit	circuit	
		2. Monitored open circuit		
		3. Close circuit		
		4. Close monitored circuit		

ITEM	TASK	CRITICAL POINTS	SUB POINTS	INSTRUCTIONAL TECHNIQUES
		Describe and identify types of call point i. Manual break glass ii. Smoke detector iii. Temperature rise detector iv. Flame detector		
		Describe and identify types of warning devices i. bell ii. horn iii. siren		
9.0.	STAND BY SUPPLIES	Recognize building and areas requiring the provision of standby supply. Types of standby supply: i. dual supply ii. battery iii. standby generator	Draw circuit diagram to show transfer to show arrangement from mains supply to standby generator or battery (use of change over switch) Draw maintenance and non- maintained emergency supply	Explain with the trainees the importance of stand by supplies with the aid of circuit drawing or chalk board
10.0	SELECTION OF CABLES	Calculate for current carrying capacity of cable Calculate the size of able up to 185mm ² Consider grouping ambient temperature thermal insulation, class of protection. Determine the size of conduit and trunking to carry number of cables	Draw the cross sectional area of the following types of cables i. XLPL cable ii. PVC armoured cable iii. PILSWA cable iv. MICC cable	Explain to trainees how to select for a cable for a particular work by means of calculations

TASK	CRITICAL POINTS	SUB POINTS	INSTRUCTIONAL TECHNIQUES
CONSUMERS DISTRIBUTION	Explain and show methods of distribution in i. domestic premises ii. commercial iii. industrial		Discuss with the trainees the distribution system at a 3-phase supply
	Demonstrate knowledge of load centres and application of diversity. Explain discrimination between protective devices		
PROTECTION AND METERING	 State the application for current and voltage (PT) transformer on high voltage supply. Describe metering arrangement for: domestic premises commercial premises industrial premises 		Explain to the trainees metering arrangement of the following: a. Commercial b. Industrial c. Domestic
	Tariffs Explain the following tariff: i. Flat rate ii. Block rate iii. Maximum demand Method of Metering: i. Single phase ii. 3-phase iii. on-peak system	Simple calculation of tariff	Discuss with the trainees the importance of tarrifs: a. Block rate b. Maximum rate c. Flat rate
	CONSUMERS DISTRIBUTION PROTECTION AND	CONSUMERS DISTRIBUTIONExplain and show methods of distribution in i. domestic premises ii. commercial iii. industrialDemonstrate knowledge of load centres and application of diversity. Explain discrimination between protective devicesPROTECTION AND METERINGState the application for current and voltage (PT) transformer on high voltage supply.Describe metering arrangement for: i. domestic premises iii. industrial premisesTariffs Explain the following tariff: i. Flat rate iii. Block rate iii. Maximum demandMethod of Metering: i. Single phase	CONSUMERS DISTRIBUTION Explain and show methods of distribution in i. domestic premises ii. commercial iii. industrial Demonstrate knowledge of load centres and application of diversity. Explain discrimination between protective devices PROTECTION AND METERING State the application for current and voltage (PT) transformer on high voltage supply. Describe metering arrangement for: i. domestic premises iii. industrial premises Tariffs Explain the following tariff: i. Flat rate ii. Block rate iii. Maximum demand Method of Metering: i. Single phase iii. 3-phase iii. on-peak system

ITEM	TASK	CRITICAL TASK	SUB TASKS	INSTRUCTIONAL TECHNIQUES
13.0	EARTHING	Describe and explain earth fault loop impedance Describe the installation and testing of earth electrodes. Explain the following types of earthing system: i. TT ii. TNC iii. TNCS		
14.0	PROTECTION OF BUILDING AGAINST LIGHTING (P 326 1965)	Determine the number of air terminations electrode and down conductors required Describe bonding of extraneous metal work. Explain use of building structive in lieu of down conductors. Describe testing the resistance of earth of protecting electrode and measurement of soil resistance		Explain to the trainees the advantage and importance of protection of building against lighting.
15.0	PLANT AND PLANT MAINTENANCE	Describe fixing requirement for transformer, switch gears and motors Identify and describe correct methods for lifting and moving equipment. Describe maintenance requirements for switch gear, transformer rotating machines	Making foundation for electrical plant. Method of handling plant. Explain planned maintenance routine systematic and use of inspection list and manufacturers recommendation	

ITEM	TASK	CRITICAL TASK	SUB TASKS	INSTRUCTIONAL TECHNIQUES
16.0	INSTALLATION OF LIGHTING SYSTEM	Select and describe suitable luminaries for i. office block ii. drawing office iii. hospitals iv. road lighting v. stock yard vi. car parts		Discuss with the trainees how to select for a suitable wiring for a particular building.
		State application for Incandescent Fluorescent Halogen Mercury vapour lamp Sodium vapour lamp	Draw the circuit diagram of the listed lamps	
17.0	TESTING AND INSPECTION	Describe methods of visual inspection and electrical test of installation; i. earth test ii. insulation resistance test iii. ring circuit test	Steps to be taken and equipment or instrument needed to conduct the following test. a. Earth test b. Insulation resist test c. Polarity test d. Ring circuit test	Explain with the trainees the sequence of inspection and testing of an installation
18.0	ESTIMATING AND PLANNING	Assess labour, materials and plant based upon information from i. drawing ii. specification iii. measurement taken on site	Steps to be taken and equipment or instrument needed to conduct the following test.a. Earth testb. Insulation resist testc. Polarity testd. Ring circuit test	Explain with the trainees the sequence of inspection and testing of an installations

ITEM	TASK	CRITICAL TASK	SUB TASKS	INSTRUCTIONAL TECHNIQUES
		PlanningKnowledge in preparation ofschedules.Use of catalogue for thefollowing:a. Orderingb. equipmentc. distributiond. materials for aparticular areaRecognize the need plan phasedeliveries of materials to suitsite conditions and contractprogress		
		Show understanding the building specification: i. building utilization ii. building construction iii. electrical installation work iv. wiring system v. Application of IEE Regulation		
19.0	SITE SUPERVISION	Introduction to specification, related drawing bill of quantity and contract condition	Explain with the aid of chart the site record and procedures	Explain to the trainees how to prepare for bill of quantity and contract condition
20.0	EMPLOYMENT LEGISLATION AND INDUSTRIAL AGREEMENT	Method of dealing with and reporting accident, labour relation, employment protection, Act, Trade Union, Industrial agreement	Explain the following methods: a. Labour Relation b. Employment protection c. Industrial agreement	Discuss with the trainees method of a. reporting accident b. labour relation c. Employment protection Act.

ITEM	TASK	CRITICAL TASK	SUB TASKS	INSTRUCTIONAL TECHNIQUES
21.0	DC MOTOR	Define a D.C. motor Describe construction of D.C. motor	Explain speed control of D.C. motor Draw the starter for D.C. motor	Discuss with the trainees how the speed or rotation can be achieved.
		Explain principle of operation of D.C. motor. Describe types of D.C. motor	Perform calculation example Eb = V Ia Ra	Application of d.c. motors Advantages and disadvantage
		i. shunt ii series iii. compound	$Eb = \frac{2TINT}{60}$	Discuss the types by mean of the enclosures

ITEM	TASK	CRITICAL TASK	SUB TASKS	INSTRUCTIONAL TECHNIQUES
1.0.	LAYOUT DIAGRAM	Introduction to ground floor	Identify the following sections	Facilitator explain to
	FOR BUILDING	plan of a building	associated with building construction	trainee the sections of a
		a. Single room	a. Windows	ground floor plan using
		b. 2-bedroom with an open	Doors	drawing and
		valendar	Partition wall	real object
		c. 2-bed room and a hall	Columns etc.	Focilitatore muides the
			b. Swinging direction of doors:	Facilitators guides the trainee to draw the plans
			i. Single	using a scale rule or by
			ii. Double	calculation method
			II. Double	
			c. Draw the following ground floor plan	
			i. Single room	
			ii. 2-bedroom with an open porch	
			iii. 3-bedroom and a living room	
			(hall)	
2.0.	USE AND APPLICATION OF	Enlargement and reduction of a	a. Draw the ground floor plan of a	Facilitator guides the
	SCALE	scale	room with a given measurement in metres using the following scale.	trainee to draw the plan using a scale rule or by
	SCALE		1:100	calculation method
			1:80	
			1:50	
			b. Reproduction of drawing	
			i. Enlargement	
			ii. Reduction	
3.0.	PROJECT WORK	Preparation of a Layout Diagram	a) Draw a layout diagram of	
			2-bedroom house	
			3-bedroom house 2-bedroom self contain flat	
			3-bedroom self contain flat	
			o bear oom sen contain nat	
			b) Insert architectural symbols or	
			lighting and accessories on a layout	
			diagram	

ITEM	TASK	CRITICAL TASK	SUB TASKS	INSTRUCTIONAL TECHNIQUES
		Conduit trunking runs on a layout diagram	Draw conduit/trunking runs on a layout diagram using fibrous tip pens instead of pencil	
		Circuiting of lighting and power	a) Draw circuiting of the lighting and power using the conduit and trunking runs as the layout	
			b) Label Circuits and mark the number cables and the sizes of cables at each section on of the run of conductor or trunking.	
		Determination of: a. Total load b. Size of supply cable c. Size of main switch	Calculate the a. Total load b. Size of supply cable c. Size or rating of the main switch	Guide trainee to calculate and select the size of main switch and supply cable
5.0	ELECTRIC MOTOR CONTROL CIRCUIT	Introduction to a. Symbols	a. Manual push button b. Electronic chemical device	

ITEM	TASK	CRITICAL TASK	SUB TASKS	INSTRUCTIONAL TECHNIQUES
6.0	ELECTRIC MOTOR CONTROL CIRCUIT	Introduction to Pilot Control Device	 a) List the following pilot control devices Limit switch Pressure switch Float switch Float switch iv. Sensor Inter locking System (Electrical Mechanical) b) Explain the importance of the listed devices in (a) above in electric motor control circuit c) 2-wire control 3-wire control 	
		Direct on starter control a. Control circuit	 a) i. Interpret the symbol to develop a control circuit ii. Use the symbol to develop a control circuit. iii. Read and interpret control circuit 	
		b. Power circuit	 b) Draw the power circuit c) Draw power and control circuit d) Draw the following controls One start/stop push button Two start/stop push button One start/two stop push button Two start/two stop push button One start/stop push button 	

ITEM	TASK	CRITICAL TASK	SUB TASKS	INSTRUCTIONAL TECHNIQUES
		Forward and Reverse	Draw the wiring diagram using the	
		Direction	following:	
			a) Control circuit	
			b) Interlocking system	
			i. Electrical	
			ii. Push button	
			c) Power circuit	
		Star Delta Starter	Draw the wiring diagram using the	
			following:	
			a) Control circuit	
			b) Power circuit	
7.0	STAND BY SUPPLY	0	a) List the main parts:	
		change over switch to control	i. Change over switch	
		standby and main supply	ii. Generator	
			iii. Main supply	
			b) Develop the following diagrams	
			i. Block diagram	
			ii. Single line diagram	
0.0			iii. Wiring diagram	
8.0.	POWER SUPPLY UNIT	Draw the diagram of a simple rectified power supply unit	a) List the main parts i. Transformer	
	UNII	rectified power supply unit	i. Transformer ii. Rectification unit	
			iii. Filtering unit	
			b) Develop the following diagrams	
			i. Block diagram	
			ii. Circuit diagram using	
			1 – diode	
			2 - diode	
			4 – diode	

CERTIFICATE TWO – TRADE SCIENCE AND CALCULATION

ITEM	TASK	CRITICAL POINTS	SUB POINTS	INSTRUCTIONAL TECHNIQUES
1.0.	ELECTROMAGNETIC INDUCTION	 Explain the following: a) Self inductance b) Mutual inductance c) Induced emf in a coil d) Stored magnetic energy e) Definition of unit of inductance 	Explanation of electromagnetism its i. effect ii. application Perform simple calculation e.g. E = L x <u>di</u> dt	
2.0.	ELECTROSTATIC	 Explain the following: a) The parallel plate capacitor b) Electric field strength c) Electric flux density d) Stored electrostatic energy in a capacitor e) Definition of unit of capacitance 	Explanation of charge and discharge capacitor construction, material and application of a capacitor Perform calculation involve: i. units of capacitance ii. series connection iii. parallel connection iv. series and parallel combination v. stored electrostatic energy e.g. Energy = ½ CV ²	
3.0.	MAGNETIC CIRCUIT	Explain the following:a) Type of magnetic materialb) Properties of common magnetic materialsc) Laminate magnetic system	Explanation of energy loses: i. Eddy current lose ii. Hysteresis lose Understanding of reasons for lamination	

ITEM	TASK	CRITICAL POINTS	SUB POINTS	INSTRUCTIONAL TECHNIQUES
4.0.	TRANSFORMER	Explain the following:	Perform calculation on transformation	
		a. Composite construction of	ratio	
		transformer	a) Transformer efficiency	
		b. Relationship between primary and secondary	b) Transformer regulation	
		i. turn	State the use of transformers Example:	
		ii. current	i. Discharge lighting	
		iii. voltage	ii. Motor starting	
			iii. Power factor improvement	
		Explain the following component	Perform calculation involving time	
5.0.	TRANSIENT	in d.c. circuit.	constant. Example	
		a. Inductance	Inductive circuit	
		b. Capacitance		
		c. Inductance and resistance	Time constant $T = L/R$ (s)	
		d. Capacitance and resistance		
			Capacitive circuit	
		Explain and define time		
		constant	Time constant $T = CR$ (s)	
		Show the growth and decay		
		curve of current in L-R circuit		
		Show charge and discharge		
6.0.	THEORY	curve in –R circuit a. R – L in series and in parallel	Transposition and evaluation of	
0.0.	INLOKI	b. R-C in series and in parallel	formulae e.g.	
		c. R-L-C in series	$X_{\rm L} = 2 \pi f L$	
		d. R-L.C. in parallel	$\begin{aligned} X_{\rm L} &= 2 \text{ mL} \\ X_{\rm C} &= 1 \end{aligned}$	
		e. Impedance and phase angle	$AC = \frac{1}{2\pi}$ fL	
		f. Constant related phase	2π 1L	
		diagram	$7_{2} = \mathbf{D}_{2} + \mathbf{V}_{2}$	
			$Z^2 = R^2 + X^2$	
			$Z2 = R2 + X^2$	
			C	

ITEM	TASK	CRITICAL POINTS	SUB POINTS	INSTRUCTIONAL TECHNIQUES
7.0.	POWER IN A.C. CIRCUIT	Explain power in a.c. single phase circuits.	Transposition and evaluation of formulae.	
		Define active newer react We	$KW = KVA \times KW \times Cos \emptyset$ $KVA^{2} = KW^{2} + KVA^{2}$	
		Define active power, react. We power and apparent power.	$\mathbf{K}\mathbf{V}\mathbf{A}^2 = \mathbf{K}\mathbf{W}^2 + \mathbf{K}\mathbf{V}\mathbf{A}^2$	
		Draw power triangle	Calculation on power factor	
		Power factor correction and its advantages and effect of over	Measurement of power, power factor in a single phase a.c. circuit using	
		correction	voltmeter, ammeter and wattmeter	
8.0.	POLYPHASE A.C. CIRCUIT	Explain the principles of 3 phase a.c. generator.	Explanation of the concept of the following polyphase system	
	CIRCOIT	pliase a.e. generator.	a. 3 phase 4-wire star connection	
		Explain the provision of single	system	
		phase, 3-phase 4-wire system from a 3-phase generator	b. 3-phase 3-wire delta connection system	
		nom a o phase generator	c. voltage and current relationships in	
			star and delta connections	
			d. Perform the related calculation eg.	
			Delta Connection	
			$Ip - I_{\underline{L}} \qquad Vp = V_{\underline{L}}$	
			Star connection	
			$Ip = IL Vp = \frac{V_L}{J_3}$	
			$P = V_L I_L \cos \emptyset$	

ITEM	TASK	CRITICAL SKILLS	SUB SKILLS	INSTRUCTIONAL TECHNIQUES
9.0	SINGLE PHASE MOTOR	Define single phase motor Explain the construction of the following types of single phase motor i. Capacitor start ii. Capacitor start iii. Capacitor start/run iv. Shaded pole v. Repulsion vi. Universal Identify main parts of single phase motor. Eg. a. Rotor b. Stator c. Bearing d. Centrifugal switch e. End shield	Explanation of principles of operation of listed single phase motors and their respective application. E.g. i. Refrigerators ii. Vacuum cleaners etc.	Show to trainees part of single phase motor
10.0	3-PHASE MOTORS	Define 3-phase motor Explain the construction of the following types of 3-phase motor. i. Squirrel cage induction motor ii. Double cage induction motor iii. Slip ring (wound rotor) induction motor Identify main parts of 3-phase motor example i. rotor ii. startor iii. end shield iv. frame	Explanation of principles of operation of listed motor Draw the starter connector of 3-phase motor i. direct-on-line starter ii. auto transformer starter iii. star delta starter Explain method of reversing direction of rotation State application of the listed motors	Discuss with trainee the operation of 3-phase motor

ITEM	TASK	CRITICAL POINTS	SUB POINTS	INSTRUCTIONAL TECHNIQUES
11.0.	INSTRUMENTS	Explain the construction operation and use of the following instruction.	Perform calculation on i. shunt resistor ii. series resistor (multiplier)	Illustrate using charts for the construction
		 i. Moving coil ii. Moving iron iii. Thermcouple iv. Megger v. Ohmmeter 	Extension of instrument range	
12.0.	RESISTANCE MEASUREMENT	Explain principle and application in cable fault location Measurement of resistance using i. Ohmmeter ii. Voltmeter and Ammeter Location of fault using murray loop test	Calculate location of fault using murray loop test. Determination of an unknown resistor using balanced bridge	
13.0	ILLUMINATION	Explain defuse and apply the terms used in illumination: i. luminous flux ii. luminous intensity iii. lumens iv. illumination v. coefficient of illustration vi. maintenance factor	Calculate illumination by: i. inverse square law ii. cosine law iii. luminous flux method Explain co-efficient of utilization	Facilitator Explain the terms used in illumination Assist trainee to apply lumen formula

ITEM	TASK	CRITICAL POINTS	SUB POINTS	INSTRUCTIONAL TECHNIQUES
14.0	ELECTRONICS	Explain D.C. power suppliers Explain Voltage stabilization	Draw circuit diagram and describe the operation of: 1. half-wave 2. full-wave 3. bridge circuit include smoothing	Discuss rectification action with trainees
			circuit	

CERTIFICATE TWO - PRACTICAL

ITEM	TASK	CRITICAL SKILLS	SUB SKILLS	INSTRUCTIONAL TECHNIQUES
11211	CONDUIT	SURFACE	Mark-out positions of accessories	Perform the exercise by
1.0	INSTALLATION	Select materials and accessories	chisel or drill mark out point on the cement wall	selecting the tools and materials for the following work with the trainees
		Concealed Conduit	Chisel make-out position	• Mark out position for chiseling or drilling
			Fix conduit box with cementErect conduit	• Fix conduits with its accessories. (Box)
			• Secure conduit with cement plaster Lay conduit on deck secure conduit with nails and binding wire on the	• Secure conduit with cement plaster
		Conduit in Deck	formwork.	
		Identify and select materials for Sodium lamp conduit eg. Choke/Ballast/Transformer capacitor, igniter	Connect and investigate sodium lamp circuit	Wire a complete circuit for a sodium vapour lamp with the trainees
2.0.	DISTRIBUTION SYSTEM	Install temporary distribution system for i. light ii. socket outlet	 i. Identification of number of ways in 3-phase d.b. e.g. 4-way, 6-way ii. Connect tone single unit 3-phase distribution board 	Connect final sub circuit to a distribution board (3- phase system)

CERTIFICATE TWO - PRACTICAL

ITEM	TASK	CRITICAL SKILLS	SUB SKILLS	INSTRUCTIONAL TECHNIQUES
3.0	METERING	Identify and select the following energy meter i. 3-ph KVAR meter ii. 3-phase KVA meter iii. 3-phase KW meter Appreciate the use of prepaid energy meter	Wire and connect the following meter:i. 3 phase KVAr meterii. 3 phase KVAiii. 3 phase KW meterAppreciate the connection of prepaid energy meter	Explain and display the different types of energy meters and their uses. 3-phase kvar meter 3-phase kvar meter 3-phase kva meter
4.0.	ST AND BY SUPPLIES	Install change over switch	Wire single phase change-over switch wire three phase change over switch Connect standby generator to change over switch	Connect change over switch to a generator and E.C.G. supply with the trainees
5.0.	TERMINATION OF CABLES	MICC CableExplain sealing of MICC cableusing the following:i.Sealing potii.Sealing compoundiii.Disciv.Cable sleevesExplain terminating MICC cableusing the following:i.gland nutii.gland bodyiii.compress ring	Select tools and materials for sealing MICC cable i. Crimpling tool ii. Ringing tool iii. Stripping tool	Perform the actual connection in sequence with the trainees
		<u>Armoured Cable</u> Explain terminating PVC armoured cable using i. Cable hug ii. Ferrule etc.	 Terminate PVC armoured cable into switch box Prepare T joint Straight joint 	

CERTIFICATE TWO - PRACTICALS

ITEM	TASK	CRITICAL SKILLS	SUB SKILLS	INSTRUCTIONAL TECHNIQUES
6.0.	WIRING SYSTEM	 Explain the construction Rising mains Under floor trunking Overhead busbar system 	<u>Rising mains</u> Install vertical trunking and lay-in cables <u>Underfloor trunking</u> Creat a duct in floor and lay-in trunking Overhead busbar suspend trunking on girder and lay-in cables	Demonstrate or perform the following exercise with the trainees a. Under floor trunking b. Overhead busbar system c. Rising motors system
7.0.	INSTALLATION OF DISCHARGE LAMPS	Identify and select materials for H.P.M. VL circuit e.g choke/ballast, capacitor etc.	Connect and investigate H.P.M.V. lamp circuit Test the circuit	Perform the sequence of connection on the H.P.M.V. lamp
8.0	PROJECTION AGAINST LIGHTENING	Identify and select materials for protection against lighting • Down conductor • Earth electrode • spikes	 Wire and connect accessories for lightning system using Down conductor Earth electrode spikes Test complete earthing system 	Demonstrate the arrangement or the sequence of connection with the trainees
9.0.	INSPECTION AND TESTING	Polarity TestIdentify and select apparatus forIdentify and select apparatus forthe testVoltage indicatorLow reading ohmmeterInsulation Resistance Test:Identify and select apparatus forinsulation resistance test e.g.(insulation tester megger)Inspection of InstallationCheck any fix equipment forcorrect operation e.g.i. Switchii. Circuit breaker etc.	 <u>Method</u> 1 Main switch and light switch close Connect voltage indicator for the test <u>Method 2</u> Main switch open, fuse remove and light switch close Connect ohmmeter for the test <u>Test for Conductor</u> <u>Insulation resistance</u> between conductors and earth Make a careful visual examination of the installation with respect to: i. types and size of switches in position ii. earth continuity conductor and bonding connected where applied 	 Perform the following test and inspection test Continuity test Insulation – Resistance Test Demonstrate and explain the following test by means of instrument Insulation Resistance test Continuity

ITEM	TASK	CRITICAL SKILLS	SUB SKILLS	INSTRUCTIONAL TECHNIQUES
11.0.	INSTALLATION OF MOTORS AND CONTROLS	Design and construct a template Select material for motor foundation	Prepare foundation using 1. rawl bolt (expansion bolt) 2. rag bolt Use real object Mount motor on slide rail	
		Motor Controls Identify and select motor starter e.g. 1. direct-on-line starter 2. auto transformer starter 3. star/delta starter	Wire and connect the following type of starter1. direct-on-line starter2. auto transformer starter3. star/delta starter	Demonstrate the sequence of connection to the following motor starters with the trainees. a. D.O.L starter b. Auto transformer starter c. Star/Delta Starter
12.0	ELECTRONICS	Rectifier Identify and select electronic device for simple power supply unit using 1. diode 2. capacitor 3. transformer	Design and construct simple power supply unit using: 1. one diode 2. two diode 3. four diode	Wire a simple stabilized power supply unit by using the following components a. Diodes b. Capacitor c. Transformer
		 Stabilized Power Supply Unit Identify and select electronic device for stalibized power supply unit using: 1. rectifier diode 2. capacitor 3. zener diode 4. resistor 	 design and construct simple power supply unit using 1. one diode 2. two diode 3. four diode Test the completed circuit 	